您现在的位置是:首页 币资讯币资讯
深度学习模型综述:用于3D MRI和CT扫描的应用
风清月明 2025-08-04 18:16:02 币资讯 已有人查阅
导读医学成像数据与其他日常图像的主要区别之一是它们通常是3D的,尤其在处理DICOM系列数据时更为明显。DICOM图像由多个2D切片组成,用于扫描或表示身体的特定部位在本文中,我们将介绍6种神经网络架构,用于训练深度学习模型,以解决3D医疗数据的问题3dU-Net3DU-Net是一种强大的医学图像分割模型,它将经典的U-Net模型扩展到3D分割,并由编码路径和解码路径组成3DU-Net在处理体积图像时,通过编码路径捕获上下文信息,并通过解码路径实现精确定位,展现出了高效的3D特性处理能力V-NetV-Net是
医学成像数据与其他日常图像的主要区别之一是它们通常是3D的,尤其在处理DICOM系列数据时更为明显。DICOM图像由多个2D切片组成,用于扫描或表示身体的特定部位

在本文中,我们将介绍6种神经网络架构,用于训练深度学习模型,以解决3D医疗数据的问题
3 d U-Net
3D U-Net是一种强大的医学图像分割模型,它将经典的U-Net模型扩展到3D分割,并由编码路径和解码路径组成
3D U-Net在处理体积图像时,通过编码路径捕获上下文信息,并通过解码路径实现精确定位,展现出了高效的3D特性处理能力

V-Net
V-Net是一种用于体积图像分割的3D卷积神经网络,它采用全分辨率3D卷积,因此与U-Net相比,计算成本更高

HighResNet
这个模型通过一系列带有残差连接的3D卷积层进行端到端的训练,能够同时处理整个3D图像

EfficientNet3D
虽然EfficientNet的3D改进不像U-Net或V-Net一样广泛用于3D分割,但在计算资源有限的情况下,它是一个值得考虑的选择,因为它在计算成本和性能之间取得了良好的平衡

Attention U-Net
这个变体是基于U-Net的,它引入了一个注意力机制,使网络能够将注意力集中在与当前任务相关的图像的特定部分

DeepMedic
这个3D CNN使用了双路径,其中一个路径是正常分辨率,另一个路径是下采样输入,以此来综合利用局部和更大的上下文信息

总结
在本文中,我们探讨了医学成像行业中使用的一些深度学习模型,用于处理3D MRI和CT扫描。这些神经网络被设计用来接收3D数据作为输入,以便学习DICOM系列中身体特定部位的复杂特征
| 欧意交易所最新推荐 | ||
| OK交易所下载 | USDT钱包下载 | 比特币平台下载 |
| 挖比特币方法 | 买稳定币教程 | 钱包注册指南 |
本文标签:
很赞哦! ()
相关文章
随机图文
2025年binance币安下载指南:新手用户注册及APP下载安装教程
binance币安作为全球知名的加密货币交易平台,为数字资产管理和提供便捷之一,许多中国大
binance币安x是哪个国家的?解析背景、发展与使用指南
当投资者和加密货币爱好者提及“binance”时,一个最基础也最内核的问题便是:“binance究
虚拟货币交易所哪间好?2025加密货币交易所评价
虚拟货币、加密货币没有特定国家或地区发行,可以全世界通用不需要换汇,另外,它不用付手
币安空投赚币是什么?跟简单赚币有什么区别?币安空投赚币图文教学
币安 空投赚币是币安 交易所推出的不定期好康活动,你只需投入USDT、BTC 等指定币种,就能